Deutsch Englisch

Informationen

Fragen Sie uns!

Neuerwerbungen

Semesterapparate

Sachgebiete

Speichern

Trefferanalyse

Abmelden

 

Elektronische Zettelkataloge

Citation Linker

E-Books

E-Journals

Datenbanken

Nationallizenzen

Fernleihe

Medienaufstellung

Katalogmenü

UB Home

 

Datenschutz

Impressum

1 von 1
      
* Ihre Aktion  Suchen Finite volume methods for hyperbolic problems
Online Ressourcen (ohne Zeitschr.)
PPN: 
883333724 Über den Zitierlink können Sie diesen Titel als Lesezeichen ablegen oder weiterleiten Testen Sie unseren Discovery-Service!
Titel: 
Person/en: 
Sprache/n: 
Englisch
Veröffentlichungsangabe: 
Cambridge : Cambridge University Press [2002], 2002
Umfang: 
1 Online-Ressource (xix, 558 pages) : digital, PDF file(s)
Schriftenreihe: 
Anmerkung: 
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Bibliogr. Zusammenhang: 
Print version:
ISBN: 
978-0-511-79125-3 ebook
Weitere Ausgaben: 978-0-521-81087-6 (Printausgabe) hardback , 978-0-521-00924-9 paperback
Identifier: 
DOI: 10.1017/CBO9780511791253
Schlagwörter: 
Mehr zum Thema: 
Klassifikation der Library of Congress: QA377
Dewey Dezimal-Klassifikation: [21] 515/.353
Regensburger Verbund-Klassifikation:
Mathematics Subject Classification: *65M60
Mathematics Subject Classification: 65-02
Mathematics Subject Classification: 65Y15
Mathematics Subject Classification: 65-00
Mathematics Subject Classification: 65M06
Mathematics Subject Classification: 35L65
Inhalt: 
This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods
Mehr zum Titel: 
 
 
 
Anmerkung: 
Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.
Volltext/Image: 
1 von 1
      
 
1 von 1